Package: gamlr 1.13-8

Matt Taddy

gamlr: Gamma Lasso Regression

The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), 'One-Step Estimator Paths for Concave Regularization', <arxiv:1308.5623>.

Authors:Matt Taddy <[email protected]>

gamlr_1.13-8.tar.gz
gamlr_1.13-8.zip(r-4.5)gamlr_1.13-8.zip(r-4.4)gamlr_1.13-8.zip(r-4.3)
gamlr_1.13-8.tgz(r-4.4-x86_64)gamlr_1.13-8.tgz(r-4.4-arm64)gamlr_1.13-8.tgz(r-4.3-x86_64)gamlr_1.13-8.tgz(r-4.3-arm64)
gamlr_1.13-8.tar.gz(r-4.5-noble)gamlr_1.13-8.tar.gz(r-4.4-noble)
gamlr_1.13-8.tgz(r-4.4-emscripten)gamlr_1.13-8.tgz(r-4.3-emscripten)
gamlr.pdf |gamlr.html
gamlr/json (API)

# Install 'gamlr' in R:
install.packages('gamlr', repos = c('https://taddylab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/taddylab/gamlr/issues

Datasets:

On CRAN:

7.25 score 23 stars 5 packages 258 scripts 874 downloads 1 mentions 5 exports 2 dependencies

Last updated 2 years agofrom:b441d514da. Checks:4 OK, 5 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 05 2025
R-4.5-win-x86_64NOTEJan 05 2025
R-4.5-linux-x86_64NOTEJan 05 2025
R-4.4-win-x86_64NOTEJan 05 2025
R-4.4-mac-x86_64NOTEJan 05 2025
R-4.4-mac-aarch64NOTEJan 05 2025
R-4.3-win-x86_64OKJan 05 2025
R-4.3-mac-x86_64OKJan 05 2025
R-4.3-mac-aarch64OKJan 05 2025

Exports:AICccv.gamlrdoubleMLgamlrnaref

Dependencies:latticeMatrix

Readme and manuals

Help Manual

Help pageTopics
Corrected AICAICc
Cross Validation for gamlrcoef.cv.gamlr cv.gamlr plot.cv.gamlr predict.cv.gamlr
double MLdoubleML
Gamma-Lasso regressioncoef.gamlr gamlr logLik.gamlr plot.gamlr predict.gamlr
NHL hockey dataconfig goal hockey player team
NA reference levelnaref